Share Course Ware
Natural Sciences > Mathematics > Linear Algebra
 Linear Algebra  posted by  member7_php   on 4/2/2009  Add Courseware to favorites Add To Favorites  
Abstract/Syllabus
Courseware/Lectures
Test/Tutorials
Further Reading
Webliography
Downloads
More Options
 
Abstract/Syllabus:

Linear Algebra

Contents
 

Chapter One: Linear Systems  1
I Solving Linear Systems . . . . . . . . . 1
1 Gauss' Method . . . . . . . . . . . . .  2
2 Describing the Solution Set . . . . . .  11
3 General = Particular + Homogeneous . . . 20
II Linear Geometry of n-Space . . . . . .  32
1 Vectors in Space . . . . . . . . . . . . 32
2 Length and Angle Measures_ . . . . . . . 38
III Reduced Echelon Form . . . . . . . . . 46
1 Gauss-Jordan Reduction . . . . . . . . . 46
2 Row Equivalence . . . . . . . . . . . .  52
Topic: Computer Algebra Systems . . . . .  62
Topic: Input-Output Analysis . . . . . . . 64
Topic: Accuracy of Computations . . . . .  68
Topic: Analyzing Networks . . . . . . . .  72
Chapter Two: Vector Spaces 79
I De_nition of Vector Space . . . . . . .  80
1 De_nition and Examples . . . . . . . . . 80
2 Subspaces and Spanning Sets . . . . . .  91
II Linear Independence . . . . . . . . . . 101
1 De_nition and Examples . . . . . . . . . 101
III Basis and Dimension . . . . . . . . .  112
1 Basis . . . . . . . . . . . . . . . . .  112
2 Dimension . . . . . . . . . . . . . . .  118
3 Vector Spaces and Linear Systems . . . . 123
4 Combining Subspaces_ . . . . . . . . . . 130
Topic: Fields . . . . . . . . . . . . . .  140
Topic: Crystals . . . . . . . . . . . . .  142
Topic: Voting Paradoxes . . . . . . . . .  146
Topic: Dimensional Analysis . . . . . . .  152
Chapter Three: Maps Between Spaces  159
I Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . .  159
2 Dimension Characterizes Isomorphism . . . . . . . . . . . . . 168
II Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
1 De_nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
2 Rangespace and Nullspace . . . . . . . . . . . . . . . . . . . . .  183
III Computing Linear Maps . . . . . . . . . . . . . . . . . . . . . . .  195
1 Representing Linear Maps with Matrices . . . . . . . . . . . . 195
2 Any Matrix Represents a Linear Map_ . . . . . . . . . . . . . .  205
IV Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . .  212
1 Sums and Scalar Products . . . . . . . . . . . . . . . . . . . . .  212
2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . .  214
3 Mechanics of Matrix Multiplication . . . . . . . . . . . . . . . .  222
4 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
V Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
1 Changing Representations of Vectors . . . . . . . . . . . . . . 238
2 Changing Map Representations . . . . . . . . . . . . . . . . . .  242
VI Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         250
1 Orthogonal Projection Into a Line_ . . . . . . . . . . . . . . . .   250
2 Gram-Schmidt Orthogonalization_ . . . . . . . . . . . . . . . .  254
3 Projection Into a Subspace_ . . . . . . . . . . . . . . . . . . . .  260
Topic: Line of Best Fit . . . . . . . . . . . . . . . . . . . . . . . . . .     269
Topic: Geometry of Linear Maps . . . . . . . . . . . . . . . . . . .  274
Topic: Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . .  281
Topic: Orthonormal Matrices . . . . . . . . . . . . . . . . . . . . . .  287
Chapter Four: Determinants  293
I Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
1 Exploration_ . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
2 Properties of Determinants . . . . . . . . . . . . . . . . . . . .  299
3 The Permutation Expansion . . . . . . . . . . . . . . . . . . . .  303
4 Determinants Exist_ . . . . . . . . . . . . . . . . . . . . . . . .  312
II Geometry of Determinants . . . . . . . . . . . . . . . . . . . . . .  319
1 Determinants as Size Functions . . . . . . . . . . . . . . . . . .  319
III Other Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
1 Laplace's Expansion_ . . . . . . . . . . . . . . . . . . . . . . . .  326
Topic: Cramer's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . .  331
Topic: Speed of Calculating Determinants . . . . . . . . . . . .  334
Topic: Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . 337
Chapter Five: Similarity  349
I Complex Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . .  349
1 Factoring and Complex Numbers; A Review_ . . . . . . . .  350
2 Complex Representations . . . . . . . . . . . . . . . . . . . . .  351
II Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
1 De_nition and Examples . . . . . . . . . . . . . . . . . . . 353
2 Diagonalizability . . . . . . . . . . . . . . . . . . . . .  355
3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . 359
III Nilpotence . . . . . . . . . . . . . . . . . . . . . . . . 367
1 Self-Composition_ . . . . . . . . . . . . . . . . . . . . .  367
2 Strings_ . . . . . . . . . . . . . . . . . . . . . . . . . . 370
IV Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . 381
1 Polynomials of Maps and Matrices_ . . . . . . . . . . . . .  381
2 Jordan Canonical Form_ . . . . . . . . . . . . . . . . . . . 388
Topic: Method of Powers . . . . . . . . . . . . . . . . . . .  401
Topic: Stable Populations . . . . . . . . . . . . . . . . . .  405
Topic: Linear Recurrences . . . . . . . . . . . . . . . . . .  407
Appendix  A-1
Propositions . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Quanti_ers . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Techniques of Proof . . . . . . . . . . . . . . . . . . . . .  A-5
Sets, Functions, and Relations . . . . . . . . . . . . . . . . A-7



www.sharecourseware.org   Tell A Friend