Share Course Ware
Natural Sciences > Mathematics > Functional Analysis Notes
 Functional Analysis Notes  posted by  member150_php   on 4/6/2009  Add Courseware to favorites Add To Favorites  
Abstract/Syllabus
Courseware/Lectures
Test/Tutorials
Further Reading
Webliography
Downloads
More Options
 
Abstract/Syllabus:

Functional Analysis Notes

Fall 2004
Prof. Sylvia Serfaty

Yevgeny Vilensky
Courant Institute of Mathematical Sciences
New York University
March 14, 2006

Lecture Outline

Contents

Preface                                                                                    iii

2.1.2 Bounded Linear Transformations . . . . . . . . . . . . . . 13
2.1.3 Duals and Double Duals . . . . . . . . . . . . . . . . . . . 15
2.2 The Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 16
2.3 The Uniform Boundedness Principle . . . . . . . . . . . . . . . . 17
2.4 The Open Mapping Theorem and Closed Graph Theorem . . . . 18
3 Weak Topology 21
3.1 General Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Frechet Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Weak Topology in Banach Spaces . . . . . . . . . . . . . . . . . . 24
3.4 Weak-* Topologies (X,X) . . . . . . . . . . . . . . . . . . . . 28
3.5 Reflexive Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Separable Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.1 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 PDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Bounded (Linear) Operators and Spectral Theory 37
4.1 Topologies on Bounded Operators . . . . . . . . . . . . . . . . . 37
4.2 Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Positive Operators and Polar Decomposition (In a Hilbert Space) 46
5 Compact and Fredholm Operators 47
5.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . 47
5.2 Riesz-Fredholm Theory . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Spectrum of Compact Operators . . . . . . . . . . . . . . . . . . 52
5.5 Spectral Decomposition of Compact, Self-Adjoint Operators in
Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A                                     57




www.sharecourseware.org   Tell A Friend