Functional Analysis Notes
posted by
member150_php
on 4/6/2009
| Add To Favorites
|
|
|
| |
Abstract/Syllabus:
|
Functional Analysis Notes
Fall 2004
Prof. Sylvia Serfaty
Yevgeny Vilensky
Courant Institute of Mathematical Sciences
New York University
March 14, 2006
Lecture Outline
Contents
Preface iii
2.1.2 Bounded Linear Transformations . . . . . . . . . . . . . . 13
2.1.3 Duals and Double Duals . . . . . . . . . . . . . . . . . . . 15
2.2 The Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 16
2.3 The Uniform Boundedness Principle . . . . . . . . . . . . . . . . 17
2.4 The Open Mapping Theorem and Closed Graph Theorem . . . . 18
3 Weak Topology 21
3.1 General Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Frechet Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Weak Topology in Banach Spaces . . . . . . . . . . . . . . . . . . 24
3.4 Weak-* Topologies (X,X) . . . . . . . . . . . . . . . . . . . . 28
3.5 Reflexive Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Separable Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.1 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 PDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Bounded (Linear) Operators and Spectral Theory 37
4.1 Topologies on Bounded Operators . . . . . . . . . . . . . . . . . 37
4.2 Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Positive Operators and Polar Decomposition (In a Hilbert Space) 46
5 Compact and Fredholm Operators 47
5.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . 47
5.2 Riesz-Fredholm Theory . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Spectrum of Compact Operators . . . . . . . . . . . . . . . . . . 52
5.5 Spectral Decomposition of Compact, Self-Adjoint Operators in
Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A 57
|
|
|
|
Rating:
0 user(s) have rated this courseware
Views:
18186
|
|
|
|
|