Course Overview
Welcome to the final and culminating experience in your formal chemistry laboratory instruction at MIT. This subject, 5.33, is intended to synthesize a number of concepts you have encountered in lecture subjects, introduce you to techniques and procedures not encountered in earlier laboratory subjects, and in addition stimulate you to think about the following ideas:
- Spectroscopy is more than group frequencies and chemical shifts. You will analyze a spectrum at high resolution to obtain structural information about a molecule, use intensity data to determine relative populations of species, relate line widths to lifetimes, perform ultrafast spectroscopic measurements in the time domain, and find out how optical properties of simple molecules are changing the world in which you live.
- Quantum mechanics is good for something. You will use computational chemistry to predict or verify quantities that you measure in the laboratory.
- Laboratory safety and proper waste disposal are necessary but not sufficient. In your laboratory work, you should always strive to reduce or eliminate the use or generation of hazardous substances in the design, synthesis, use, and disposal of chemical substances.
Experiments
There are four experiments in 5.33. Completion of all experiments is required.
- Molecular spectroscopy of acetylene and methane
- Magnetic resonance spectroscopy and ESR spectroscopy
- Time-resolved electronic spectroscopy
- Nitrogen scission by Molybdenum (III) Xylidene Complex
Laboratory Partners
Students will carry out all experiments with two laboratory partners. The importance of having lab partners with whom you can work compatibly and communicate conveniently cannot be overemphasized.
Working Hours
On average you should expect to spend the equivalent of three full afternoons a week in the lab. In some experiments more than this amount of time will be needed, and less in others. In some experiments, it may be possible for parts of the analysis, calculations, and discussion to be done outside of the lab. Reading about the experiments in advance is absolutely essential in 5.33.
Grading
Your grade in 5.33 will depend on the sum of scores for each of the four experiments. The grade for each experiment will be determined by several factors including the report, in-lab assignments and an experimental technique grade. There is no predetermined percentage of letter grades to be awarded.
The breakdown is as follows:
Grading criteria.
EXPERIMENT # |
TOPICS AND FORMATS |
POINTS |
1 |
IR spectroscopy: written report |
30 points |
2 |
NMR and ESR: oral report |
30 points |
3 |
Time-resolved spectroscopy: written report |
40 points |
4 |
Nitrogen scission: Microsoft® PowerPoint® presentation |
40 points |
|
Total |
130 points |
Teaching assistants will grade the individual experiments according to the following principles. The number of points given will primarily reflect the understanding of the experiment (in theory and practice), the analysis and interpretation of the data, and safe laboratory practice. The data quality, presentation, and the experimental skill of the student will also be considered, although to a lesser extent.
The manner in which these guidelines are implemented will vary somewhat with the type of report. The grade is partially subjective since the TAs must weigh the quality of the laboratory technique (including note taking) and the use of proper safety precautions in lab.
Preparation
Although they are demanding of laboratory skills and do introduce a number of new experimental techniques, the experiments in 5.33 are more oriented toward fostering a synthesis of your understanding of the concepts and theory being a phenomenon than was the case in 5.32 or 5.311. In other words, you cannot come into the lab without having read the experiment. Moreover, oral presentations will be expected to show a real grasp of the concepts underlying the lab work.
The TAs assigned to each experiment will have worked on the experiment before the start of the term. They will have been chosen because their area of graduate work corresponds roughly to the area of chemistry related to the experiment. You are encouraged to ask lots of questions while you are working on the experiment. This will be most effective if you have done your homework and know useful questions to ask.
Calendar
In this course, students are divided into three groups for the laboratory experiments. Each group begins working on a different experiment and completes a cycle of three experiments by the end of the semester. As a result, no two groups ever work on the same experiment at the same time. The experiments schedule shows this rotation format.
During the first six weeks of the course, the class attends a series of lectures on the general background and theory relevant to the experiments. A detailed discussion of each experiment is also presented to each laboratory group when they begin the experiment. These group sessions are designated as Conferences. Lecture and Conference topics are presented in the lecture schedule below.
Experiments Schedule
The lab manuals for the experiments referred to in the table below can be found on the Labs page.
Experiment schedule.
DAY # |
GROUP A |
GROUP B |
GROUP C |
1 |
Laboratory check-in |
Begin first rotation |
2-18 |
Nitrogen Lab: Day 1 to 17 |
Laser Lab and NMR/ESR Lab: Day 1 to 17 |
IR Lab: Day 1 to 17 |
19 |
Nitrogen Lab: Presentation practice meetings |
Laser Lab and NMR/ESR Lab: Day 18
Laser Lab: Written report due
|
IR Lab: Day 18 |
20 |
Nitrogen Lab: Presentation practice meetings |
NMR/ESR Lab: Day 19 |
IR Lab: Day 19 |
21 |
Nitrogen Lab: Microsoft® PowerPoint® presentations |
NMR/ESR Lab: Oral reports |
IR Lab: Written report due |
22 |
Nitrogen Lab: Microsoft® PowerPoint® presentations |
NMR/ESR Lab: Oral reports |
|
Begin second rotation |
23-38 |
Laser Lab and NMR/ESR Lab: Day 1 to 16 |
IR Lab: Day 1 to 16 |
Nitrogen Lab: Day 1 to 16 |
39 |
Laser Lab and NMR/ESR Lab: Day 17
Laser Lab: Written report due
|
IR Lab: Day 17 |
Nitrogen Lab: Day 17 |
40 |
NMR/ESR Lab: Day 18 |
IR Lab: Day 18 |
Nitrogen Lab: Presentation practice meetings |
41 |
NMR/ESR Lab: Day 19 |
IR Lab: Day 19 |
Nitrogen Lab: Presentation practice meetings |
42 |
NMR/ESR Lab: Oral reports |
IR Lab: Written report due |
Nitrogen Lab: Microsoft® PowerPoint® presentations |
43 |
NMR/ESR Lab: Oral reports |
|
Nitrogen Lab: Microsoft® PowerPoint® presentations |
Begin third rotation |
44-59 |
IR Lab: Day 1 to 16 |
Nitrogen Lab: Day 1 to 16 |
Laser Lab and NMR/ESR Lab: Day 1 to 16 |
60 |
IR Lab: Day 17 |
Nitrogen Lab: Day 17 |
Laser Lab and NMR/ESR Lab: Day 17 Laser Lab: Written report due
|
61 |
IR Lab: Day 18 |
Nitrogen Lab: Presentation practice meetings |
NMR/ESR Lab: Day 18 |
62 |
IR Lab: Day 19 |
Nitrogen Lab: Presentation practice meetings |
NMR/ESR Lab: Day 19 |
63 |
IR Lab: Written report due |
Nitrogen Lab: Microsoft® PowerPoint® presentations |
NMR/ESR Lab: Oral reports |
64 |
|
Nitrogen Lab: Microsoft® PowerPoint® presentations |
NMR/ESR Lab: Oral reports |
65 |
Laboratory check-out |
Lecture Schedule
The lecture notes for the lectures listed below can be found on the Lecture Notes page. On some indicated sessions, only the specified group is required to go to lecture.
Lecture schedule.
DAY # |
LECTURE TOPICS |
|
|
1 |
Mandatory safety lecture |
Begin first rotation |
2 |
Introduction, course organization |
5 |
Classical description of spectroscopy, part I |
7 |
Spectroscopy II |
10 |
Principles for interpreting molecular spectra |
11 |
Electronic spectroscopy (Group B only) |
12 |
Vibrational spectroscopy |
13 |
Analysis of IR spectra (Group C only) |
14 |
Preparing oral presentations |
16 |
Nitrogen scission with Molybdenum complexes |
19 |
Magnetic resonance: NMR |
21 |
Magnetic resonance: ESR |
Begin second rotation |
24 |
Electronic spectroscopy (Group A only) |
27 |
Analysis of IR spectra (Group B only) |
Begin third rotation |
46 |
Electronic spectroscopy (Group C only) |
48 |
Analysis of IR spectra (Group A only) |