Share Course Ware
Natural Sciences > Physics > A Computational Approach
 A Computational Approach  posted by  member7_php   on 2/11/2009  Add Courseware to favorites Add To Favorites  
Abstract/Syllabus
Courseware/Lectures
Test/Tutorials
Further Reading
Webliography
Downloads
More Options
 
Abstract/Syllabus:

Sussman, Gerald, and Jack Wisdom, 12.620J Classical Mechanics: A Computational Approach, Fall 2008. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed 09 Jul, 2010). License: Creative Commons BY-NC-SA

Fall 2002

Cover of course textbook, Structure and Interpretation of Classical Mechanics, by Sussman and Wisdom, MIT Press, 2001. (Courtesy of MIT Press.)

Course Highlights

12.620J offers an online version of the textbook for the course, Structure and Interpretation of Classical Mechanics, written by Professors Gerald Jay Sussman and Jack Wisdom. This course also has other course materials online, including downloads and supporting documentation for the Scheme Mechanics System.

Course Description

12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.

The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance overlap and transition to chaos, and properties of chaotic motion.

Ideas are illustrated and supported with physical examples. There is extensive use of computing to capture methods, for simulation, and for symbolic analysis.

 

Syllabus

MASSACHVSETTS INSTITUTE OF TECHNOLOGY
Joint Subject Offering: 6.946J, 8.351J, 12.620J

Classical Mechanics: A Computational Approach

Instructors:

Prof. Jack Wisdom
Prof. Gerald Jay Sussman

We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.

We will consider the following topics: The Lagrangian formulation. Action, variational principles, and equations of motion. Hamilton's principle. Conserved quantities. Rigid bodies and tops. Hamiltonian formulation and canonical equations. Surfaces of section. Chaos. Canonical transformations and generating functions. Liouville's theorem and Poincaré integral invariants. Poincaré-Birkhoff and KAM theorems. Invariant curves and cantori. Nonlinear resonances. Resonance overlap and transition to chaos. Properties of chaotic motion.

Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis.

This subject awards H-LEVEL Graduate Credit, however the subject is appropriate for undergraduates who have taken the prerequisites. Undergraduates are welcome.

Prerequisites
8.01, 18.03, 6.001 or equivalent
Lectures
Three sessions / week
Computer Lab
Time to be arranged.
Units
3-3-6
Limited Enrollment

Permission of instructors required.

 

Calendar

This section lists the lecture topics for the course, organized by general topic areas.
 

Introduction

 


     
  LEC #       TOPICS
     
     
  1       Mechanics is More than Equations of Motion
     


Lagrangian Mechanics

     
  LEC #       TOPICS
     
     
  2       Principle of Stationary Action
     
     
  3       Lagrange Equations
     
     
  4       Hamilton's Principle
     
     
  5       Coordinate Transformations and Rigid Constraints
     
     
  6       Total-time Derivatives and the Euler-Lagrange Operator
     
     
  7       State and Evolution - Chaos
     
     
  8       Conserved Quantities
     


Rigid Bodies

     
  LEC #       TOPICS
     
     
  9       Kinematics of Rigid Bodies, Moments of Inertia
     
     
  10       Generalized Coordinates for Rigid Bodies
     
     
  11       Motion of a Free Rigid Body
     
     
  12       Axisymmetric Top
     
     
  13       Spin-Orbit Coupling
     
     
  14       Euler's Equations
     


Hamiltonian Mechanics

     
  LEC #       TOPICS
     
     
  15       Hamilton's Equations
     
     
  16       Legendre Transformation
     
     
  17       Hamiltonian Action and Poisson Brackets
     
     
  18       Phase Space Reduction
     
     
  19       Phase-Space Evolution, Surfaces of Section
     
     
  20       Autonomous Systems: Henon-Heiles
     
     
  21       Exponential Divergence, Solar System
     
     
  22       Liouville Theorem
     


Phase Space Structure

     
  LEC #       TOPICS
     
     
  23       Linear Stability
     
     
  24       Homoclinic Tangle
     
     
  25       Integrable Systems
     
     
  26       Poincare-Birkhoff Theorem
     
     
  27       Invariant Curves -- KAM Theorem
     


Canonical Transformations

     
  LEC #       TOPICS
     
     
  28       Canonical Transformations
     
     
  29       Integral Invariants, Extended Phase Space
     
     
  30       Generating Functions
     
     
  31       Time Evolution is Canonical
     
     
  32       Hamilton-Jacobi Equation
     
     
  33       Lie Transforms
     


Perturbation Theory

     
  LEC #       TOPICS
     
     
  34       Perturbation Theory with Lie Series
     
     
  35       Small Denominators and Secular Terms
     
     
  36       Nonlinear Resonances and Resonance Overlap
     
     
  37       Second-Order Resonances
     
     
  38       Adiabatic Chaos



www.sharecourseware.org   Tell A Friend